Simple centrifugal fractionation to reduce the size distribution of cellulose nanofibers

Author:

Zhai Lindong,Kim Hyun Chan,Kim Jung Woong,Kim Jaehwan

Abstract

AbstractSince cellulose nanofiber (CNF) has unique characteristics in terms of renewability, high specific elastic modulus and strength and transparency, it is attractive for a building block of future materials. CNF can be extracted from various natural resource by several means. However, the size of the extracted CNF is very broad and uniformity of the extracted CNF is very important for many applications. Thus, a fractionation process is necessary to obtain a uniformly sized CNF. In this paper, a simple centrifugal fractionation was carried out to reduce the size distribution of the extracted CNF suspension from hardwood pulp by the combination of TEMPO oxidation and aqueous counter collision methods. The original CNF suspension was diluted and centrifuged under low speed to remove cellulose microfibers then centrifuged under high speed to separate very small CNF. The centrifugation condition is 10 k rpm for 1 h followed by 45 k rpm for 4 h. The fractionated CNF was analyzed by an atomic force microscopy, and the length and width distribution histogram analysis was utilized. UV–visible analysis, FT-IR and XRD crystallinity analysis were carried out to analyze all fractionated CNFs and the original CNF. After centrifugal fractionation, the width and length distribution range were reduced by 62% and 70%, respectively. It is shown that the centrifugal fractionation is an easy and efficient method to fractionate a uniform CNF suspension.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3