Worn surface topography and mathematical modeling of Ti-6Al-3Mo-2Sn-2Zr-2Nb-1.5Cr alloy

Author:

Elshaer Ramadan N.,Ibrahim Khaled M.,Farahat Ahmed Ismail Zaky

Abstract

AbstractThis study aims at investigating worn surface topography and mathematical modeling of annealed Ti-6Al-3Mo-2Sn-2Zr-2Nb-1.5Cr alloy using response surface methodology (RSM). The alloy was subjected to three different regimes in order to study their effect on mechanical properties. First regime was applying cold deformation by compression until 15% drop in height at room temperature. The second regime was performing solution treated on the deformed samples at 920 °C for 15 min then air-cooled (AC) to ambient temperature. Third regime was applying aging on the deformed and solution treated specimen for 4 hr at 590 °C followed by air-cooling. Three different velocities (1, 1.5, and 2 m/s) were adopted to conduct dry sliding wear according to the experimental design technique (EDT). Gwyddion and Matlab softwares were used to detect worn surface photographs analytically and graphically. Maximum hardness of 425 HV20 was obtained for AC+Aging specimen, while minimum hardness of 353 HV20 was reported for the annealed specimen. Applying aging process after solution treatment enhanced considerably the wear property and this enhancement reached 98% as compared to the annealed condition. The relationship between input factors (hardness & velocity) and responses (Abbott Firestone zones) was demonstrated using analysis of variance (ANOVA). The best models for Abbott Firestone zones (high peaks, exploitation, and voids) produced accurate data that could be estimated for saving time and cost. The results showed that the average surface roughness increases with increasing sliding velocity for all conditions except AC+Aging condition where the average surface roughness decreased with increasing sliding velocity. The results revealed that at low velocity and hardness, the material gives the highest exploitation zone (86%). While at high velocity and hardness, the material gives the lowest exploitation zone (70%). In general, the predicted results of mathematical model showed close agreement with experimental results, creating that models could be utilized to predict Abbott Firestone zones satisfactorily.

Funder

Tabbin Institute for Metallurgical Studies

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3