Deformation characteristics and mechanism of Mala paleo-landslide during the Miaowei reservoir initial impoundment period

Author:

Mai Zhijie,Hu Xi,Li Lianke,Hou Jiacheng

Abstract

AbstractThis study employs a multifaceted approach, encompassing field investigations, borehole surveys, surface deformation displacement monitoring, deep-seated deformation monitoring, and numerical simulation analysis, to conduct an exhaustive examination of the deformation processes and characteristics exhibited by the Mala Landslide. The findings elucidate a close correlation between the deformation of the Mala Landslide and the elevation of the reservoir water level. During the escalation of the reservoir water level, the landslide body progressively developed surface cracks, spanning from the frontal edge to the rear edge. The centre of the sliding body is situated in the central-lower downstream region, and presently, the landslide is undergoing a phase of comprehensive creep deformation. Due to the reservoir water level fluctuation rate being greater than the permeability coefficient, the deformation of the landslide displays a delayed response. As the reservoir water level reaches 1401 m during high-water operation, the two important ingredients, the buoyancy weight reduction effect and the influence of submerged reservoir water, significantly reduce the sliding resistance of the sliding mass, thereby exacerbating the deformation of the landslide. Following a comprehensive analysis of the findings, it can be firmly concluded that this landslide conforms to the characteristic traits of a typical buoyant force reduction type-retrogressive type landslide.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3