Using PVA and captive breeding to balance trade-offs in the rescue of the island dibbler onto a new island ark

Author:

Aisya Zahra,White Daniel J.ORCID,Thavornkanlapachai RujipornORCID,Friend J. AnthonyORCID,Rick KateORCID,Mitchell Nicola J.ORCID

Abstract

AbstractIn the face of the current global extinction crisis, it is critical we give conservation management strategies the best chance of success. Australia is not exempt from global trends with currently the world’s greatest mammal extinction rate (~ 1 per 8 years). Many more are threatened including the dibbler (Parantechinus apicalis) whose remnant range has been restricted to Western Australia at just one mainland site and two small offshore islands—Whitlock Island (5 ha) and Boullanger Island (35 ha). Here, we used 14 microsatellite markers to quantify genetic variation in the remaining island populations from 2013 to 2018 and incorporated these data into population viability analysis (PVA) models, used to assess factors important to dibbler survival and to provide guidance for translocations. Remnant population genetic diversity was low (< 0.3), and populations were highly divergent from each other (pairwise FSTs 0.29–0.52). Comparison of empirical data to an earlier study is consistent with recent declines in genetic diversity and models projected increasing extinction risk and declining genetic variation in the next century. Optimal translocation scenarios recommend 80 founders for new dibbler populations—provided by captive breeding—and determined the proportion of founders from parental populations to maximise genetic diversity and minimise harvesting impact. The goal of our approach is long-term survival of genetically diverse, self-sustaining populations and our methods are transferable. We consider mixing island with mainland dibblers to reinforce genetic variation.

Funder

Australian Government’s National Environmental Science Programme through the Threatened Species Recovery Hub

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference110 articles.

1. Burbidge, A. A. & Abbott, I. Mammals on Western Australian islands: occurrence and preliminary analysis. Aust. J. Zool. 65, 183–195. https://doi.org/10.1071/zo17046 (2017).

2. Fischer, J. & Lindenmayer, D. B. An assessment of the published results of animal relocations. Biol. Conserv. 96, 1–11. https://doi.org/10.1016/S0006-3207(00)00048-3 (2000).

3. Legge, S. et al. Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildl. Res. 45, 627–644. https://doi.org/10.1071/wr17172 (2018).

4. Morris, K. et al. Forty years of fauna translocations in Western Australia: lessons learned. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).

5. Seddon, P. J., Moro, D., Mitchell, N. J., Chauvenet, A. & Mawson, P. Proactive conservation or planned invasion? Past, current and future use of assisted colonisation. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3