A weighted patient network-based framework for predicting chronic diseases using graph neural networks

Author:

Lu Haohui,Uddin Shahadat

Abstract

AbstractChronic disease prediction is a critical task in healthcare. Existing studies fulfil this requirement by employing machine learning techniques based on patient features, but they suffer from high dimensional data problems and a high level of bias. We propose a framework for predicting chronic disease based on Graph Neural Networks (GNNs) to address these issues. We begin by projecting a patient-disease bipartite graph to create a weighted patient network (WPN) that extracts the latent relationship among patients. We then use GNN-based techniques to build prediction models. These models use features extracted from WPN to create robust patient representations for chronic disease prediction. We compare the output of GNN-based models to machine learning methods by using cardiovascular disease and chronic pulmonary disease. The results show that our framework enhances the accuracy of chronic disease prediction. The model with attention mechanisms achieves an accuracy of 93.49% for cardiovascular disease prediction and 89.15% for chronic pulmonary disease prediction. Furthermore, the visualisation of the last hidden layers of GNN-based models shows the pattern for the two cohorts, demonstrating the discriminative strength of the framework. The proposed framework can help stakeholders improve health management systems for patients at risk of developing chronic diseases and conditions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference60 articles.

1. World Health Organization. Integrated chronic disease prevention and control. https://www.who.int/chp/about/integrated_cd/en/ (2021).

2. AIHW. Chronic condition multimorbidity. https://www.aihw.gov.au/reports/chronic-disease/chronic-condition-multimorbidity/contents/chronic-conditions-and-multimorbidity (2021).

3. AIHW. Chronic Disease. https://www.aihw.gov.au/reports-data/health-conditions-disability-deaths/chronic-disease/overview (2020).

4. Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: Towards better research applications and clinical care. Nat. Rev. Genet. 13, 395–405 (2012).

5. Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 19, 281. https://doi.org/10.1186/s12911-019-1004-8 (2019).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3