Reducing CNOT count in quantum Fourier transform for the linear nearest-neighbor architecture

Author:

Park Byeongyong,Ahn Doyeol

Abstract

AbstractPhysical limitations of quantum hardware often necessitate nearest-neighbor (NN) architecture. When synthesizing quantum circuits using the basic gate library, which consists of CNOT and single-qubit gates, CNOT gates are required to convert a quantum circuit into one suitable for an NN architecture. In the basic gate library, CNOT gates are considered the primary cost of quantum circuits due to their higher error rates and longer execution times compared to single-qubit gates. In this paper, we propose a new linear NN (LNN) circuit design for quantum Fourier transform (QFT), one of the most versatile subroutines in quantum algorithms. Our LNN QFT circuit has only about 40% of the number of CNOT gates compared to previously known LNN QFT circuits. Subsequently, we input both our QFT circuits and conventional QFT circuits into the Qiskit transpiler to construct QFTs on IBM quantum computers, which necessitate NN architectures. Consequently, our QFT circuits demonstrate a substantial advantage over conventional QFT circuits in terms of the number of CNOT gates. This outcome implies that the proposed LNN QFT circuit design could serve as a novel foundation for developing QFT circuits implemented in quantum hardware that demands NN architecture.

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3