Author:
Andersen Sofie Bech,Taghavi Iman,Kjer Hans Martin,Søgaard Stinne Byrholdt,Gundlach Carsten,Dahl Vedrana Andersen,Nielsen Michael Bachmann,Dahl Anders Bjorholm,Jensen Jørgen Arendt,Sørensen Charlotte Mehlin
Abstract
AbstractSuper-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague–Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献