Correlations between COVID-19 and dengue obtained via the study of South America, Africa and Southeast Asia during the 2020s

Author:

Bergero Paula,Schaposnik Laura P.,Wang Grace

Abstract

AbstractA dramatic increase in the number of outbreaks of dengue has recently been reported, and climate change is likely to extend the geographical spread of the disease. In this context, this paper shows how a neural network approach can incorporate dengue and COVID-19 data as well as external factors (such as social behaviour or climate variables), to develop predictive models that could improve our knowledge and provide useful tools for health policy makers. Through the use of neural networks with different social and natural parameters, in this paper we define a Correlation Model through which we show that the number of cases of COVID-19 and dengue have very similar trends. We then illustrate the relevance of our model by extending it to a Long short-term memory model (LSTM) that incorporates both diseases, and using this to estimate dengue infections via COVID-19 data in countries that lack sufficient dengue data.

Funder

National Science Foundation

National Scientific and Technical Research Council, Argentina

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference30 articles.

1. Berberian, G. Dengue at the beginning of the COVID-19 pandemic in Argentina. Arch. Argent. Pediatr. 119, 131–138 (2021).

2. Bergero, P. & Guisoni, N. Mathematical modelling of dengue-COVID-19 coinfection: a first approximation. Revista Argentina De Salud Publica 13, 05 (2021).

3. Rahman, T., Sobur, A., Islam, S., Toniolo, A. & Nazmul Hussain Nazir, K. H. M. Is the COVID-19 pandemic masking dengue epidemic in Bangladesh?. J. Adv. Vet. Anim. Res. 7(2), 218–219 (2020).

4. Pan American Health Organization. Epidemiological Update: Dengue in the context of COVID-19 (2020).

5. Murphy, B. R. & Whitehead, S. S. Immune response to dengue virus and prospects for a vaccine. Annu. Rev. Immunol. 29, 587–619 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3