Author:
Sengupta Debmalya,Bhattacharya Gairika,Ganguli Sayak,Sengupta Mainak
Abstract
AbstractThe cognate interaction of ROBO1/4 with its ligand SLIT2 is known to be involved in lung cancer progression. However, the precise role of genetic variants, disrupting the molecular interactions is less understood. All cancer-associated missense variants of ROBO1/4 and SLIT2 from COSMIC were screened for their pathogenicity. Homology modelling was done in Modeller 9.17, followed by molecular simulation in GROMACS. Rigid docking was performed for the cognate partners in PatchDock with refinement in HADDOCK server. Post-docking alterations in conformational, stoichiometric, as well as structural parameters, were assessed. The disruptive variants were ranked using a weighted scoring scheme. In silico prioritisation of 825 variants revealed 379 to be potentially pathogenic out of which, about 12% of the variants, i.e. ROBO1 (14), ROBO4 (8), and SLIT2 (23) altered the cognate docking. Six variants of ROBO1 and 5 variants of ROBO4 were identified as "high disruptors" of interactions with SLIT2 wild type. Likewise, 17 and 13 variants of SLIT2 were found to be "high disruptors" of its interaction with ROBO1 and ROBO4, respectively. Our study is the first report on the impact of cancer-associated missense variants on ROBO1/4 and SLIT2 interactions that might be the drivers of lung cancer progression.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献