Abstract
AbstractSelf-organisation is a ubiquitous phenomenon in ecosystems. These systems can experience transitions from a uniform cover towards the formation of vegetation patterns as a result of symmetry-breaking instability. They can be either periodic or localised in space. Localised vegetation patterns consist of more or less circular spots or patches that can be either isolated or randomly distributed in space. We report on a striking patterning phenomenon consisting of localised vegetation labyrinths. This intriguing pattern is visible in satellite photographs taken in many territories of Africa and Australia. They consist of labyrinths which is spatially irregular pattern surrounded by either a homogeneous cover or a bare soil. The phenomenon is not specific to particular plants or soils. They are observed on strictly homogenous environmental conditions on flat landscapes, but they are also visible on hills. The spatial size of localized labyrinth ranges typically from a few hundred meters to ten kilometres. A simple modelling approach based on the interplay between short-range and long-range interactions governing plant communities or on the water dynamics explains the observations reported here.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
ANID-MIllenium Science Initiative Program
Beca Doctorado Nacional
Fonds National de la Recherche Scientifique
Wallonie-Bruxelles International
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993).
2. Murray, J. D. Mathematical biology. In Biomathematics Vol. 19 (Springer, 1989).
3. Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics Vol. 751 (Springer, 2008).
4. Tlidi, M., Staliunas, K., Panajotov, K., Vladimiorv, A. G. & Clerc, M. G. Localized structures in dissipative media: From optics to plant ecology. Philos. Trans. R. Soc. A 372, 20140101 (2014).
5. Yochelis, A., Gilad, E., Nishiura, Y., Silber, M. & Uecker, H. Special issue: Advances in pattern formation. Physica D 415, 132769 (2021).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献