Uncomputability and complexity of quantum control

Author:

Bondar Denys I.ORCID,Pechen Alexander N.ORCID

Abstract

AbstractIn laboratory and numerical experiments, physical quantities are known with a finite precision and described by rational numbers. Based on this, we deduce that quantum control problems both for open and closed systems are in general not algorithmically solvable, i.e., there is no algorithm that can decide whether dynamics of an arbitrary quantum system can be manipulated by accessible external interactions (coherent or dissipative) such that a chosen target reaches a desired value. This conclusion holds even for the relaxed requirement of the target only approximately attaining the desired value. These findings do not preclude an algorithmic solvability for a particular class of quantum control problems. Moreover, any quantum control problem can be made algorithmically solvable if the set of accessible interactions (i.e., controls) is rich enough. To arrive at these results, we develop a technique based on establishing the equivalence between quantum control problems and Diophantine equations, which are polynomial equations with integer coefficients and integer unknowns. In addition to proving uncomputability, this technique allows to construct quantum control problems belonging to different complexity classes. In particular, an example of the control problem involving a two-mode coherent field is shown to be NP-hard, contradicting a widely held believe that two-body problems are easy.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference73 articles.

1. Glaser, S. J. et al. Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279, ISSN 1434-6079, https://doi.org/10.1140/epjd/e2015-60464-1 (2015).

2. Butkovskiy, A. G. & Samoilenko, Y. I. Control of Quantum-Mechanical Processes and Systems (Kluwer Academic, Dordrecht, 1990).

3. Shapiro, M. & Brumer, P. Principles of the quantum control of molecular processes (Wiley-VCH, 2003).

4. Tannor, D. J. Introduction to quantum mechanics: a time-dependent perspective (University Science Books, 2007).

5. Fradkov, A. Cybernetical Physics: From Control of Chaos to Quantum Control (Springer, New York, 2007).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3