Energy-use efficiency of organic and conventional plant production systems in Germany

Author:

Chmelíková Lucie,Schmid Harald,Anke Sandra,Hülsbergen Kurt-Jürgen

Abstract

AbstractSustainable and efficient energy use in agriculture helps tackle climate change by reducing fossil energy use. We evaluated German farming systems by analysing energy input and output. Data from 30 organic and 30 conventional farms (12 arable, 18 dairy farms each) between 2009 and 2011 was used. Energy input, output, and the influence of farm type, farm structure, and management intensity on energy-use efficiency (EUE) were analysed for crop production using the farm management system REPRO. Conventional farms (CF) always had higher energy input. The energy input for organic farms (OF) was 7.2 GJ ha−1 and for CF 14.0 GJ ha−1. The energy output of CF was also higher. Reductions were higher in energy input than in energy output. In 73.3% of the farm pairs, OF were more energy efficient than CF. The EUE was comparable with CF on 10% of OF and for 16.7% of CF the EUE was higher suggesting better fossil energy utilization. EUE can be increased when reducing fossil energy inputs through more efficient machinery, reduction of agrochemicals, precision farming, the use of renewable energy or energy retention, and by increasing yields. A reduction of inputs is urgently required to lower the (political) dependence on fossil energy.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3