Abstract
AbstractSubretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis. Fundus and optical coherence tomography (OCT) imaging was used to non-invasively track lesions. Lesion number and area were quantified with ImageJ. Retinal sections, wholemounts and Western blots were used to characterise alterations. Subretinal lesions expand between 4 and 8 weeks and become established in size and location around 12 weeks. Subretinal lesions were confirmed to be fibrotic, including various cell populations involved in fibrosis development. Müller cell processes extended from superficial retina into subretinal lesions at 8 weeks. Western blotting revealed increases in fibronectin (4 wk and 8 wk, p < 0.001), CTGF (20 wks, p < 0.001), MMP2 (12 wks and 20 wks p < 0.05), αSMA (12 wks and 20 wks p < 0.05) and GFAP (8 wk and 12 wk, p ≤ 0.01), consistent with our immunofluorescence results. Intravitreal injection of Aflibercept reduced subretinal lesion growth. Our study provides evidence JR5558 mice have subretinal fibrotic lesions that grow between 4 and 8 weeks and confirms this line to be a good model to study subretinal fibrosis development and assess treatment options.
Publisher
Springer Science and Business Media LLC