Data driven of underground water level using artificial intelligence hybrid algorithms

Author:

Rahimi Mohammadtaghi,Ebrahimi Hossein

Abstract

AbstractAs the population grows, industry and agriculture have also developed and water resources require quantitative and qualitative management. Currently, the management of water resources is essential in the exploitation and development of these resources. For this reason, it is important to study water level fluctuations to check the amount of underground water storage. It is vital to study the level of underground water in Khuzestan province with a dry climate. The methods which exist for predicting and managing water resources are used in studies according to their strengths and weaknesses and according to the conditions. In recent years, artificial intelligence has been used extensively for groundwater resources worldwide. Since artificial intelligence models have provided good results in water resources up to now, in this study, the hybrid model of three new recombined methods including FF-KNN, ABC-KNN and DL-FF-KNN-ABC-MLP has been used to predict the underground water level in Khuzestan province (Qale-Tol area). The novelty of this technique is that it first does classification by presenting the first block (combination of FF-DWKNN algorithm) and predicts with the second block (combination of ABC-MLP algorithm). The algorithm’s ability to decrease data noise will be enabled by this feature. In order to predict this key and important parameter, a part of the data related to wells 1–5 has been used to build artificial intelligence hybrid models and also to test these models, and to check this model three wells 6–8 have been used for the development of these models. After checking the results, it is clear that the statistical RMSE values of this algorithm including test, train and total data are 0.0451, 0.0597 and 0.0701, respectively. According to the results presented in the table reports, the performance accuracy of DL-FF-KNN-ABC-MLP for predicting this key parameter is very high.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference27 articles.

1. Gleeson, T. et al. The global volume and distribution of modern groundwater. Nat. Geosci. 9(2), 161–167 (2016).

2. Liu, F. et al. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China. Sci. Total Environ. 538, 327–340 (2015).

3. Foster, S. Groundwater Resources and Irrigated Agriculture: Making a Beneficial Relation More Sustainable (International Water Management Institute, 2012).

4. Konikow, L. F. & Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 13, 317–320 (2005).

5. Salih, A. Contribution of UNESCO-international hydrological programme to water resources management in the Arabian gulf countries. In Developments in Water Science (ed. Salih, A.) 129–139 (Elsevier, 2003).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3