PARSEG: a computationally efficient approach for statistical validation of botanical seeds’ images

Author:

Frigau Luca,Conversano Claudio,Antoch Jaromír

Abstract

AbstractHuman recognition and automated image validation are the most widely used approaches to validate the output of binary segmentation methods but, as the number of pixels in an image easily exceeds several million, they become highly demanding from both practical and computational standpoint. We propose a method, called PARSEG, which stands for PArtitioning, Random Selection, Estimation, and Generalization; being the basic steps within this procedure. Suggested method enables us to perform statistical validation of binary images by selecting the minimum number of pixels from the original image to be used for validation without deteriorating the effectiveness of the validation procedure. It utilizes binary classifiers to accomplish image validation and selects the optimal sample of pixels according to a specific objective function. As a result, the computational complexity of the validation experiment is substantially reduced. The procedure’s effectiveness is illustrated by considering images composed of approximately 13 million pixels from the field of seed recognition. PARSEG provides roughly the same precision of the validation process when extended to the entire image, but it utilizes only about 4% of the original number of pixels, thus reducing, by about 90%, the computing time required to validate a binary segmented image.

Funder

Ministero dell'Università e della Ricerca

Czech Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3