Multi-objective genetic algorithm calibration of colored self-compacting concrete using DEM: an integrated parallel approach

Author:

Shafaie Vahid,Movahedi Rad Majid

Abstract

AbstractA detailed numerical simulation of Colored Self-Compacting Concrete (CSCC) was conducted in this research. Emphasis was placed on an innovative calibration methodology tailored for ten unique CSCC mix designs. Through the incorporation of multi-objective optimization, MATLAB's Genetic Algorithm (GA) was seamlessly integrated with PFC3D, a prominent Discrete Element Modeling (DEM) software package. This integration facilitates the exchange of micro-parameter values, where MATLAB’s GA optimizes these parameters, which are then input into PFC3D to simulate the behavior of CSCC mix designs. The calibration process is fully automated through a MATLAB script, complemented by a fish script in PFC, allowing for an efficient and precise calibration mechanism that automatically terminates based on predefined criteria. Central to this approach is the Uniaxial Compressive Strength (UCS) test, which forms the foundation of the calibration process. A distinguishing aspect of this study was the incorporation of pigment effects, reflecting the cohesive behavior of cementitious components, into the micro-parameters influencing the cohesion coefficient within DEM. This innovative approach ensured significant alignment between simulations and observed macro properties, as evidenced by fitness values consistently exceeding 0.94. This investigation not only expanded the understanding of CSCC dynamics but also contributed significantly to the discourse on advanced concrete simulation methodologies, underscoring the importance of multi-objective optimization in such studies.

Funder

Széchenyi István University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3