Dissecting the chromosome-level genome of the Asian Clam (Corbicula fluminea)

Author:

Zhang Tongqing,Yin Jiawen,Tang Shengkai,Li Daming,Gu Xiankun,Zhang Shengyu,Suo Weiguo,Liu Xiaowei,Liu Yanshan,Jiang Qicheng,Zhao Muzi,Yin Yue,Pan Jianlin

Abstract

AbstractThe Asian Clam (Corbicula fluminea) is a valuable commercial and medicinal bivalve, which is widely distributed in East and Southeast Asia. As a natural nutrient source, the clam is rich in protein, amino acids, and microelements. The genome of C. fluminea has not yet been characterized; therefore, genome-assisted breeding and improvements cannot yet be implemented. In this work, we present a de novo chromosome-scale genome assembly of C. fluminea using PacBio and Hi-C sequencing technologies. The assembled genome comprised 4728 contigs, with a contig N50 of 521.06 Kb, and 1,215 scaffolds with a scaffold N50 of 70.62 Mb. More than 1.51 Gb (99.17%) of genomic sequences were anchored to 18 chromosomes, of which 1.40 Gb (92.81%) of genomic sequences were ordered and oriented. The genome contains 38,841 coding genes, 32,591 (83.91%) of which were annotated in at least one functional database. Compared with related species, C. fluminea had 851 expanded gene families and 191 contracted gene families. The phylogenetic tree showed that C. fluminea diverged from Ruditapes philippinarum, ~ 228.89 million years ago (Mya), and the genomes of C. fluminea and R. philippinarum shared 244 syntenic blocks. Additionally, we identified 2 MITF members and 99 NLRP members in C. fluminea genome. The high-quality and chromosomal Asian Clam genome will be a valuable resource for a range of development and breeding studies of C. fluminea in future research.

Funder

the major project of hydro bios resources in Jiangsu Province

the monitoring of fishery resources in fishery waters of Jiangsu Province in 2018

the independent research project of Freshwater Fisheries Research Institute of Jiangsu Province - the identification of Corbicula species and genetic conservation unit in Jiangsu inland waters

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3