Thermal shakedown in granular materials with irregular particle shapes

Author:

Pan Yize,Gong Xiaohui,Rotta Loria Alessandro F.

Abstract

AbstractGranular materials with irregular particle shapes undergo a myriad of temperature variations in natural and engineered systems. However, the impacts of cyclic temperature variations on the mechanics of granular materials remain poorly understood. Specifically, little is known about the response of granular materials to cyclic temperature variations as a function of the following central variables: particle shape, applied stress level, relative density, and temperature amplitude. This paper presents advanced laboratory experiments to explore the impacts of cyclic temperature variations on the mechanics of granular materials, with a focus on sands. The results show that cyclic temperature variations applied to sands induce thermal shakedown: the accumulation of irreversible bulk deformations due to microstructural rearrangements caused by thermal expansions and contractions of the constituting particles. The deformation of sands caused by thermal shakedown strongly depends on particle shape, stress level, relative density, and temperature amplitude. This deformation is limited for individual thermal cycles but accumulates and becomes significant for multiple thermal cycles, leading to substantial compaction in sands and other granular materials, which can affect various natural and engineered systems.

Funder

Army Research Office

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3