Rapid DNA origami nanostructure detection and classification using the YOLOv5 deep convolutional neural network

Author:

Chiriboga Matthew,Green Christopher M.,Hastman David A.,Mathur Divita,Wei Qi,Díaz Sebastían A.,Medintz Igor L.,Veneziano Remi

Abstract

AbstractThe intra-image identification of DNA structures is essential to rapid prototyping and quality control of self-assembled DNA origami scaffold systems. We postulate that the YOLO modern object detection platform commonly used for facial recognition can be applied to rapidly scour atomic force microscope (AFM) images for identifying correctly formed DNA nanostructures with high fidelity. To make this approach widely available, we use open-source software and provide a straightforward procedure for designing a tailored, intelligent identification platform which can easily be repurposed to fit arbitrary structural geometries beyond AFM images of DNA structures. Here, we describe methods to acquire and generate the necessary components to create this robust system. Beginning with DNA structure design, we detail AFM imaging, data point annotation, data augmentation, model training, and inference. To demonstrate the adaptability of this system, we assembled two distinct DNA origami architectures (triangles and breadboards) for detection in raw AFM images. Using the images acquired of each structure, we trained two separate single class object identification models unique to each architecture. By applying these models in sequence, we correctly identified 3470 structures from a total population of 3617 using images that sometimes included a third DNA origami structure as well as other impurities. Analysis was completed in under 20 s with results yielding an F1 score of 0.96 using our approach.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference57 articles.

1. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

2. Denker, J. S. et al. Neural network recognizer for hand-written zip code digits. Adv. Neural Inf. Process. Syst. 2, 323–331 (1989).

3. Cordts, M. et al. The cityscapes dataset for semantic urban scene understanding. Proc. IEEE Comput Soc. Conf. Comput. Vis. Pattern Recognit. 2, 3213–3223 (2016).

4. Khan, S., Rahmani, H., Shah, S. A. A. & Bennamoun, M. A guide to convolutional neural networks for computer vision. Synth. Lect. Comput. Vis. 8, 1–207 (2018).

5. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. IEEE Comput Soc. Conf. Comput. Vis. Pattern Recognit. 2, 580–587 (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3