Task design for crowdsourced glioma cell annotation in microscopy images

Author:

Schwarze Svea,Schaadt Nadine S.,Sobotta Viktor M. G.,Spicher Nicolai,Skripuletz Thomas,Esmaeilzadeh Majid,Krauss Joachim K.,Hartmann Christian,Deserno Thomas M.,Feuerhake Friedrich

Abstract

AbstractCrowdsourcing has been used in computational pathology to generate cell and cell nuclei annotations for machine learning. Herein, we broaden its scope to the previously unsolved challenging task of glioma cell detection. This requires multiplexed immunofluorescence microscopy due to diffuse invasiveness and exceptional similarity between glioma cells and reactive astrocytes. In four pilot experiments, we iteratively developed a task design enabling high-quality annotations by crowdworkers on Amazon Mechanical Turk. We applied majority or weighted vote and validated them against ground truth in the final setting. On the base of a YOLO convolutional neural network architecture, we used these consensus labels for training with different image representations regarding colors, intensities, and immmunohistochemical marker combinations. A crowd of 712 workers defined aggregated point annotations in 235 images with an average $$F_1$$ F 1 score of 0.627 for majority vote. The networks resulted in acceptable $$F_1$$ F 1 scores up to 0.69 for YOLOv8 on average and indicated first evidence for transferability to images lacking tumor markers, especially in IDH-wildtype glioblastoma. Our work confirms feasibility of crowdsourcing to generate labels suitable for training of machine learning tools in the challenging and clinically relevant use case of glioma microenvironment.

Funder

Else Kröner-Fresenius-Stiftung

Bundesministerium für Bildung und Forschung

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Albarqouni, S. et al. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35, 1313–1321 (2016).

2. Ghahremani, P. & Kaufman, A. E. Crowddeep: Deep-learning from the crowd for nuclei segmentation. Med. Imaging Dig. Comp. Pathol. 12039, 357–365 (2022).

3. Kim, E., Mente, S., Keenan, A. & Gehlot, V. Digital pathology annotation data for improved deep neural network classification. SPIE Med. Imaging 1, 101380 (2017).

4. Estellés-Arolas, E. & González-Ladrón-De-Guevara, F. Towards an integrated crowdsourcing definition. J. Inf. Sci. 38, 189–200 (2012).

5. Hoßfeld, T. et al. Best practices and recommendations for crowdsourced qoe-lessons learned from the qualinet task force crowdsourcing. QUALINET (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3