Physical and thermomechanical characterization of unidirectional Helicteres isora fiber-reinforced polylactic acid bio-composites

Author:

Acharya Prashantha,Pai Dayananda,Padmaraj N. H.,Mahesha G. T.

Abstract

AbstractIdentifying novel cellulose fiber bio-composites has become a vital initiative in the exploration of sustainable materials due to increased global concern for the environment. This growing focus on eco-friendly materials has gathered significant attention in recent years. The current investigation deals with one such material, Helicteres isora reinforced Polylactic acid composites. Surface chemical treatment of fiber is one of the most effective methods to modify the hydrophilic fiber to increase its compatibility with the polymer matrix. Sodium hydroxide was used as a pre-treatment chemical to remove any impurities from the fiber surface. Pre-treated fibers were treated with Methacryl silane and Potassium permanganate solution to chemically modify the fiber surface. Density, void content and water absorption behavior of the composites were analyzed as per the standard procedure. Tensile and flexural tests were conducted to evaluate the mechanical strength, modulus, and flexibility of the unidirectional composites. Thermogravimetric and differential thermal analyses were performed to investigate the thermal stability, melting behavior and degradation profiles of prepared composites. A study of failure mechanisms and morphology of the fractured surface through photographs and SEM images revealed fiber splitting and delamination as the dominant reasons behind the failure of composites under tensile loading. Silane-treated Helicteres isora fiber-reinforced Polylactic acid composite exhibited lower water absorption and higher tensile strength than its counterparts. Untreated fiber composite showed maximum flexural strength among the tested composites. By collectively evaluating the results of the tests and properties of the composites, silane-treated fiber-reinforced Polylactic acid composites stands out as the most favorable choice.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3