Author:
Zehra Syeda Sundus,Magarini Maurizio,Qureshi Rehan,Mustafa Syed Muhammad Nabeel,Farooq Faiza
Abstract
AbstractThe physical random access channel (PRACH) is used in the uplink of cellular systems for initial access requests from the users. It is very hard to achieve low latency by implementing conventional methods in 5G. The performance of the system degrades when multiple users try to access the PRACH receiver with the same preamble signature, resulting in a collision of request signals and dual peak occurrence. In this paper, we used two machine learning classification technique models with signals samples as big data to obtain the best proactive approach. First, we implemented three supervised learning algorithms, Decision Tree Classification (DTC), naïve bayes (NB), and K-nearest neighbor (KNN) to classify the outcome based on two classes, labeled as ‘peak’ and ‘false peak’. For the second approach, we constructed a Bagged Tree Ensembler, using multiple learners which contributes to the reduction of the variance of DTC and comparing their asymptotes. The comparison shows that Ensembler method proves to be a better proactive approach for the stated problem.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献