Effects of soil texture and nitrogen fertilisation on soil bacterial community structure and nitrogen uptake in flue-cured tobacco

Author:

Zheng Meiying,Zhu Pei,Zheng Jiayu,Xue Lin,Zhu Qifa,Cai Xianjie,Cheng Sen,Zhang Zhongfeng,Kong Fanyu,Zhang Jiguang

Abstract

AbstractWe tested the hypothesis that soil texture and nitrogen (N) fertilisation are the primary factors regulating the N cycle and soil bacterial community structure. The response of soil bacterial communities to N fertilisation in different textured soils might help in identifying the specific underlying mechanism and hence management of N fertiliser application in fields. We examined how N fertiliser accumulates in flue-cured tobacco and influences soil bacterial community structure in different textured soils. We conducted plot and micro-plot experimental measurements of N content in soil and tobacco samples using the KNO315N isotope technique. Soil bacterial community structure was determined using high-throughput sequencing of 16S rRNA. Nitrogen absorption and utilisation by tobacco plants were highest in sandy loam soils, followed by loam soil and clay loam. The ability of clay loam to supply N was weak during the plant growth period. Absence of fertilisation could reduce bacterial abundance in soils to various degrees. Bacterial diversity was higher in sandy loam soil than in loam soil and clay loam. Soil texture and N fertilisation significantly affected soil bacterial community structure and diversity. Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Chloroflexi were the dominant bacterial phyla, while Bacillus, Nitrobacter, Nitrosospira, Nitrospira, and Rhizobium were the primary N transformation bacteria at the genus level in all treatments. However, relative abundances differed with N fertiliser application, which could lead to differential N availability and N use efficiency of tobacco among soil types. We conclude that both soil texture and N fertilisation influence N accumulation and distribution in flue-cured tobacco and thus regulate soil bacterial communities. N fertiliser application in sandy loam soil should be strictly controlled for its higher N use efficiency, soil bacterial abundance, and diversity.

Funder

Science and Technology Project of Anhui Tobacco Company

Science and Technology Project of Shanghai Tobacco Group

Agricultural Science and Technology Innovation Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3