Ensemble classification and segmentation for intracranial metastatic tumors on MRI images based on 2D U-nets

Author:

Li Cheng-Chung,Wu Meng-Yun,Sun Ying-Chou,Chen Hung-Hsun,Wu Hsiu-Mei,Fang Ssu-Ting,Chung Wen-Yuh,Guo Wan-Yuo,Lu Henry Horng-Shing

Abstract

AbstractThe extraction of brain tumor tissues in 3D Brain Magnetic Resonance Imaging (MRI) plays an important role in diagnosis before the gamma knife radiosurgery (GKRS). In this article, the post-contrast T1 whole-brain MRI images had been collected by Taipei Veterans General Hospital (TVGH) and stored in DICOM format (dated from 1999 to 2018). The proposed method starts with the active contour model to get the region of interest (ROI) automatically and enhance the image contrast. The segmentation models are trained by MRI images with tumors to avoid imbalanced data problem under model construction. In order to achieve this objective, a two-step ensemble approach is used to establish such diagnosis, first, classify whether there is any tumor in the image, and second, segment the intracranial metastatic tumors by ensemble neural networks based on 2D U-Net architecture. The ensemble for classification and segmentation simultaneously also improves segmentation accuracy. The result of classification achieves a F1-measure of $$75.64\%$$ 75.64 % , while the result of segmentation achieves an IoU of $$84.83\%$$ 84.83 % and a DICE score of $$86.21\%$$ 86.21 % . Significantly reduce the time for manual labeling from 30 min to 18 s per patient.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference16 articles.

1. Eichler, A. et al. The biology of brain metastasestranslation to new therapies. Nat. Rev. Clin. Oncol. 8(6), 344 (2011).

2. Gamma Knife Radiosurgery, Chapter: Intracranial Cavernomas and Gamma Knife Radiosurgery (SM Group eBooks DE-USA) pp. 1–18

3. Hemalatha, R. J. et al. Active contour based segmentation techniques for medical image analysis. Medical and biological image analysis17, (2018).

4. Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988).

5. Ioffe, S., & Szegedy, C. ñBatch normalization: accelerating deep network training by reducing internal covariate shift. In îICML (2015).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3