Reduction of hemagglutination induced by a SARS-CoV-2 spike protein fragment using an amyloid-binding benzothiazole amphiphile

Author:

Li Meihan,Castro Lingl Sascha,Yang Jerry

Abstract

AbstractCOVID-19 infection is associated with a variety of vascular occlusive morbidities. However, a comprehensive understanding of how this virus can induce vascular complications remains lacking. Here, we show that a peptide fragment of SARS-CoV-2 spike protein, S192 (sequence 192-211), is capable of forming amyloid-like aggregates that can induce agglutination of red blood cells, which was not observed with low- and non-aggregated S192 peptide. We subsequently screened eight amyloid-binding molecules and identified BAM1-EG6, a benzothiazole amphiphile, as a promising candidate capable of binding to aggregated S192 and partially inhibiting its agglutination activity. These results provide new insight into a potential molecular mechanism for the capability of spike protein metabolites to contribute to COVID-19-related blood complications and suggest a new therapeutic approach for combating microvascular morbidities in COVID-19 patients.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3