Identification of the blasting vibration characteristics of groundwater-sealed tunnel

Author:

Rao Xiaokang,Huang Shengxiang

Abstract

AbstractBlasting is widely used in mining, subway, demolition and groundwater-sealed tunnel, among them, the last one is widely concerned because of its many adjacent tunnels, high anti-seepage requirements, strict blasting control, etc. The identification of blasting characteristics is of great significance to the blasting construction and the safety evaluation of the groundwater-sealed tunnel. In view of the problem that conventional feature identification methods are less explored in groundwater-sealed tunnel, a complementary ensemble empirical mode decomposition with adaptive noise and multiscale permutation entropy and Hilbert–Huang transform (HHT) method was proposed. Then, the proposed method was verified by the numerical simulation and the Huangdao groundwater-sealed tunnel engineering. The results show that the proposed method can suppress modal aliasing and signal noise and identify the blasting characteristics of groundwater-sealed tunnel effectively. In addition, the blasting vibration energy which accounts for 94.7% in the frequency range of 0–200 Hz, 72.5% of 0–50 Hz was summarized. Furthermore, the safety status of each monitoring point was evaluated through HHT and the feasibility of millisecond blasting was identified. The method proposed can identify the vibration characteristics and safety status of groundwater-sealed tunnel from the perspective of time–frequency and energy effectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3