Artificial intelligence in diagnosing dens evaginatus on periapical radiography with limited data availability

Author:

Choi Eunhye,Pang KangMi,Jeong Eunjae,Lee Sangho,Son Youngdoo,Seo Min-Seock

Abstract

AbstractThis study aimed to develop an artificial intelligence (AI) model using deep learning techniques to diagnose dens evaginatus (DE) on periapical radiography (PA) and compare its performance with endodontist evaluations. In total, 402 PA images (138 DE and 264 normal cases) were used. A pre-trained ResNet model, which had the highest AUC of 0.878, was selected due to the small number of data. The PA images were handled in both the full (F model) and cropped (C model) models. There were no significant statistical differences between the C and F model in AI, while there were in endodontists (p = 0.753 and 0.04 in AUC, respectively). The AI model exhibited superior AUC in both the F and C models compared to endodontists. Cohen’s kappa demonstrated a substantial level of agreement for the AI model (0.774 in the F model and 0.684 in C) and fair agreement for specialists. The AI’s judgment was also based on the coronal pulp area on full PA, as shown by the class activation map. Therefore, these findings suggest that the AI model can improve diagnostic accuracy and support clinicians in diagnosing DE on PA, improving the long-term prognosis of the tooth.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3