Genome-wide identification of AAAP gene family and expression analysis in response to saline-alkali stress in foxtail millet (Setaria italica L.)

Author:

Wang Huimin,Li Yun,Guo Zhenqing,Zhou Xiaoke,Zhao Yuxue,Han Yucui,Lin Xiaohu

Abstract

AbstractAmino acid/auxin permease (AAAP) genes encode a large family of protein transporters that play important roles in various aspects of plant growth and development. Here, we performed genome-wide identification of members in the foxtail millet (Setaria italica L.) AAAP family (SiAAAP) and their saline-alkali stress-induced expression patterns, resulting in the identification of 65 SiAAAP genes, which could be divided into eight subfamilies. Except for SiAAAP65, the remaining 64 genes were located on nine chromosomes of foxtail millet. Gene structure and conserved motif analyses indicated that the members in the same subfamily are highly conserved. Gene duplication event analysis suggested that tandem duplication may be the main factor driving the expansion of this gene family, and Ka/Ks analysis indicated that all the duplicated genes have undergone purifying selection. Transcriptome analysis showed differential expression of SiAAAPs in roots, stems, leaves, and tassel inflorescence. Analysis of cis-acting elements in the promoter indicated that SiAAAPs contain stress-responsive cis-acting elements. Under saline-alkali stress, qRT-PCR analysis showed that SiAAP3, SiLHT2, and SiAAP16 were differentially expressed between salt-alkali tolerant millet variety JK3 and salt-alkali sensitive millet variety B175. These results suggest that these genes may be involved in or regulate the response to saline-alkali stress, providing a theoretical basis for further studying the function of SiAAAPs.

Funder

the Key Research and Development Program of Hebei Province

the Scientific Research Foundation of Hebei Normal University of Science and Technology

Hebei Modern Agricultural Industry Technology System Innovation Team (Coarse grains and Beans) Project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3