Dual encoder–decoder-based deep polyp segmentation network for colonoscopy images

Author:

Lewis John,Cha Young-Jin,Kim Jongho

Abstract

AbstractDetection of colorectal polyps through colonoscopy is an essential practice in prevention of colorectal cancers. However, the method itself is labor intensive and is subject to human error. With the advent of deep learning-based methodologies, and specifically convolutional neural networks, an opportunity to improve upon the prognosis of potential patients suffering with colorectal cancer has appeared with automated detection and segmentation of polyps. Polyp segmentation is subject to a number of problems such as model overfitting and generalization, poor definition of boundary pixels, as well as the model’s ability to capture the practical range in textures, sizes, and colors. In an effort to address these challenges, we propose a dual encoder–decoder solution named Polyp Segmentation Network (PSNet). Both the dual encoder and decoder were developed by the comprehensive combination of a variety of deep learning modules, including the PS encoder, transformer encoder, PS decoder, enhanced dilated transformer decoder, partial decoder, and merge module. PSNet outperforms state-of-the-art results through an extensive comparative study against 5 existing polyp datasets with respect to both mDice and mIoU at 0.863 and 0.797, respectively. With our new modified polyp dataset we obtain an mDice and mIoU of 0.941 and 0.897 respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3