Author:
Ramalingam Rajesvaran,Jiang Guoqiao,Larjava Hannu,Häkkinen Lari
Abstract
AbstractStandard cell cultures are performed in aqueous media with a low macromolecule concentration compared to tissue microenvironment. In macromolecular crowding (MMC) experiments, synthetic polymeric crowders are added into cell culture media to better mimic macromolecule concentrations found in vivo. However, their effect on cultured cells is incompletely understood and appears context-dependent. Here we show using human gingival fibroblasts, a cell type associated with fast and scarless wound healing, that MMC (standard medium supplemented with Ficoll 70/400) potently modulates fibroblast phenotype and extracellular matrix (ECM) composition compared to standard culture media (nMMC) over time. MMC significantly reduced cell numbers, but increased accumulation of collagen I, cellular fibronectin, and tenascin C, while suppressing level of SPARC (Secreted Protein Acidic and Cysteine Rich). Out of the 75 wound healing and ECM related genes studied, MMC significantly modulated expression of 25 genes compared to nMMC condition. MMC also suppressed myofibroblast markers and promoted deposition of basement membrane molecules collagen IV, laminin 1, and expression of LAMB3 (Laminin Subunit Beta 3) gene. In cell-derived matrices produced by a novel decellularization protocol, the altered molecular composition of MMC matrices was replicated. Thus, MMC may improve cell culture models for research and provide novel approaches for regenerative therapy.
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献