Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology

Author:

Basha Islam K.,Abd El-Monaem Eman M.,Khalifa Randa E.,Omer Ahmed M.,Eltaweil Abdelazeem S.

Abstract

AbstractNew multi-featured adsorbent beads were fabricated through impregnation of sulfonated graphene (SGO) oxide into cellulose acetate (CA) beads for fast adsorption of cationic methylene blue (MB) dye. The formulated SGO@CA composite beads were thoroughly characterized by several tools including FTIR, TGA, SEM, XRD, XPS and zeta potential. The optimal levels of the most significant identified variables affecting the adsorption process were sequential determined by the response surface methodology (RSM) using Plackett–Burman and Box–Behnken designs. The gained results denoted that the surface of SGO@CA beads displayed the higher negative charges (− 42.2 mV) compared to − 35.7 and − 38.7 mV for pristine CA and SGO, respectively. In addition, the floated SGO@CA beads demonstrated excellent floating property, fast adsorption and easy separation. The adsorption performance was accomplished rapidly, since the adsorption equilibrium was closely gotten within 30 min. Furthermore, the adsorption capacity was greatly improved with increasing SGO content from 10 to 30%. The obtained data were followed the pseudo-second order kinetic model and agreed with Langmuir adsorption isotherm model with a maximum adsorption capacity reached 234.74 mg g−1. The thermodynamic studies designated the spontaneity and endothermic nature of MB dye adsorption. Besides, the floated beads exposed acceptable adsorption characteristics for six successive reuse cycles, in addition to their better adsorption selectivity towards MB dye compared to cationic crystal violet and anionic Congo red dyes. These findings assume that the formulated SGO@CA floated beads could be used effectively as highly efficient, easy separable and reusable adsorbents for the fast removal of toxic cationic dyes.

Funder

The Science, Technology & Innovation Funding Authority

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3