Machine learning for RNA sequencing-based intrinsic subtyping of breast cancer

Author:

Cascianelli Silvia,Molineris Ivan,Isella Claudio,Masseroli Marco,Medico Enzo

Abstract

AbstractStratification of breast cancer (BC) into molecular subtypes by multigene expression assays is of demonstrated clinical utility. In principle, global RNA-sequencing (RNA-seq) should enable reconstructing existing transcriptional classifications of BC samples. Yet, it is not clear whether adaptation to RNA-seq of classifiers originally developed using PCR or microarrays, or reconstruction through machine learning (ML) is preferable. Hence, we focused on robustness and portability of PAM50, a nearest-centroid classifier developed on microarray data to identify five BC “intrinsic subtypes”. We found that standard PAM50 is profoundly affected by the composition of the sample cohort used for reference construction, and we propose a strategy, named AWCA, to mitigate this issue, improving classification robustness, with over 90% of concordance, and prognostic ability; we also show that AWCA-based PAM50 can even be applied as single-sample method. Furthermore, we explored five supervised learners to build robust, single-sample intrinsic subtype callers via RNA-seq. From our ML-based survey, regularized multiclass logistic regression (mLR) displayed the best performance, further increased by ad-hoc gene selection on the global transcriptome. On external test sets, mLR classifications reached 90% concordance with PAM50-based calls, without need of reference sample; mLR proven robustness and prognostic ability make it an equally valuable single-sample method to strengthen BC subtyping.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on machine learning approaches in cardiac tissue engineering;Frontiers in Biomaterials Science;2024-04-03

2. MESBC: A novel mutually exclusive spectral biclustering method for cancer subtyping;Computational Biology and Chemistry;2024-04

3. Identification of subtypes in digestive system tumors based on multi-omics data and graph convolutional network;International Journal of Machine Learning and Cybernetics;2024-03-14

4. Breast Cancer Gene Expression Analysis for the Classification of the Disease using Data Mining Algorithms;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

5. MRI/RNA-Seq-Based Radiogenomics and Artificial Intelligence for More Accurate Staging of Muscle-Invasive Bladder Cancer;International Journal of Molecular Sciences;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3