Integration of molecular docking and molecular dynamics simulations with subtractive proteomics approach to identify the novel drug targets and their inhibitors in Streptococcus gallolyticus

Author:

Chao Peng,Zhang Xueqin,Zhang Lei,Yang Aiping,Wang Yong,Chen Xiaoyang

Abstract

AbstractStreptococcus gallolyticus (Sg) is a non-motile, gram-positive bacterium that causes infective endocarditis (inflammation of the heart lining). Because Sg has gained resistance to existing antibiotics and there is currently no drug available, developing effective anti-Sg drugs is critical. This study combined core proteomics with a subtractive proteomics technique to identify potential therapeutic targets for Sg. Several bioinformatics approaches were used to eliminate non-essential and human-specific homologous sequences from the bacterial proteome. Then, virulence, druggability, subcellular localization, and functional analyses were carried out to specify the participation of significant bacterial proteins in various cellular processes. The pathogen’s genome contained three druggable proteins, glucosamine-1phosphate N-acetyltransferase (GlmU), RNA polymerase sigma factor (RpoD), and pantetheine-phosphate adenylyltransferase (PPAT) which could serve as effective targets for developing novel drugs. 3D structures of target protein were modeled through Swiss Model. A natural product library containing 10,000 molecules from the LOTUS database was docked against therapeutic target proteins. Following an evaluation of the docking results using the glide gscore, the top 10 compounds docked against each protein receptor were chosen. LTS001632, LTS0243441, and LTS0236112 were the compounds that exhibited the highest binding affinities against GlmU, PPAT, and RpoD, respectively, among the compounds that were chosen. To augment the docking data, molecular dynamics simulations and MM-GBSA binding free energy were also utilized. More in-vitro research is necessary to transform these possible inhibitors into therapeutic drugs, though computer validations were employed in this study. This combination of computational techniques paves the way for targeted antibiotic development, which addresses the critical need for new therapeutic strategies against S. gallolyticus infections.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3