Abstract
AbstractClimate change will cause a substantial future greenhouse gas release from warming and thawing permafrost-affected soils to the atmosphere enabling a positive feedback mechanism. Increasing the population density of big herbivores in northern high-latitude ecosystems will increase snow density and hence decrease the insulation strength of snow during winter. As a consequence, theoretically 80% of current permafrost-affected soils (<10 m) is projected to remain until 2100 even when assuming a strong warming using the Representative Concentration Pathway 8.5. Importantly, permafrost temperature is estimated to remain below −4 °C on average after increasing herbivore population density. Such ecosystem management practices would be therefore theoretically an important additional climate change mitigation strategy. Our results also highlight the importance of new field experiments and observations, and the integration of fauna dynamics into complex Earth System models, in order to reliably project future ecosystem functions and climate.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).
2. Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–748, https://doi.org/10.1038/ngeo3031 (2017).
3. Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107, https://doi.org/10.1038/s41561-017-0054-8 (2018).
4. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).
5. IPCC. Summary for policymakers. In Stocker, T. F. et al. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献