Author:
Sheth Tulsi Sagar,Acharya Falguni
Abstract
AbstractThis study aims to optimize and evaluate drug release kinetics of Modified-Release (MR) solid dosage form of Quetiapine Fumarate MR tablets by using the Artificial Neural Networks (ANNs). In training the neural network, the drug contents of Quetiapine Fumarate MR tablet such as Sodium Citrate, Eudragit® L100 55, Eudragit® L30 D55, Lactose Monohydrate, Dicalcium Phosphate (DCP), and Glyceryl Behenate were used as variable input data and Drug Substance Quetiapine Fumarate, Triethyl Citrate, and Magnesium Stearate were used as constant input data for the formulation of the tablet. The in-vitro dissolution profiles of Quetiapine Fumarate MR tablets at ten different time points were used as a target data. Several layers together build the neural network by connecting the input data with the output data via weights, these weights show importance of input nodes. The training process optimises the weights of the drug product excipients to achieve the desired drug release through the simulation process in MATLAB software. The percentage drug release of predicted formulation matched with the manufactured formulation using the similarity factor (f2), which evaluates network efficiency. The ANNs have enormous potential for rapidly optimizing pharmaceutical formulations with desirable performance characteristics.
Publisher
Springer Science and Business Media LLC