Wave dynamics alteration by discontinuous flexible mats of artificial seagrass can support seagrass restoration efforts

Author:

Villanueva Raúl,Paul Maike,Schlurmann Torsten

Abstract

AbstractSeagrass restoration can be promoted through the use of artificial seagrass (ASG). However, there is no guideline for ASG design, which requires a sound understanding of the inherent hydrodynamics in a submerged environment. Present know-how primarily stems from idealized ASG attached to a fixed bed. To develop accessible field deployment for restoration, anchored prototype scale ASG mats (coconut mesh) were proposed and tested under differing wave conditions. The aim of this study was then to: 1) analyze hydrodynamic interaction of ASG mats; and 2) assess the suitability of contemporary predictive hydrodynamic models. Velocity structure and wave propagation were measured around one and two ASG mats (separated by a 2-m gap). The mats reduced orbital velocities by up to 16% (2 mats), whereby the average reduction of all tested vegetated conditions was low ($$<10\%$$ < 10 % ) compared to the non-vegetated conditions. Velocities increased above the ASG, with the gap enhancing velocity (up to 11%) instead of attenuating it. Wave decay followed an exponential decrease, further enhanced by the second mat. Current models did not capture the induced hydrodynamics for the full range of wave conditions tested, with the second mat increasing uncertainties. Wave decay models generally overestimated wave attenuation (up to 30%), except for longer wave periods. Nevertheless, for the full range of conditions, the models provide accurate insight into the expected magnitude of attenuation under field conditions. It is speculated that mat flexibility affects the surrounding hydrodynamics through inherent motion, with the gap contributing to the uncertainties.

Funder

Niedersächsisches Ministerium für Wissenschaft und Kultur

Bundesministerium für Bildung und Forschung

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3