Validation of a New Rodent Experimental System to Investigate Consequences of Long Duration Space Habitation

Author:

Choi Sungshin Y.,Saravia-Butler Amanda,Shirazi-Fard Yasaman,Leveson-Gower Dennis,Stodieck Louis S.,Cadena Samuel M.,Beegle Janet,Solis Stephanie,Ronca April,Globus Ruth K.

Abstract

AbstractAnimal models are useful for exploring the health consequences of prolonged spaceflight. Capabilities were developed to perform experiments in low earth orbit with on-board sample recovery, thereby avoiding complications caused by return to Earth. For NASA’s Rodent Research-1 mission, female mice (ten 32 wk C57BL/6NTac; ten 16 wk C57BL/6J) were launched on an unmanned vehicle, then resided on the International Space Station for 21/22d or 37d in microgravity. Mice were euthanized on-orbit, livers and spleens dissected, and remaining tissues frozen in situ for later analyses. Mice appeared healthy by daily video health checks and body, adrenal, and spleen weights of 37d-flight (FLT) mice did not differ from ground controls housed in flight hardware (GC), while thymus weights were 35% greater in FLT than GC. Mice exposed to 37d of spaceflight displayed elevated liver mass (33%) and select enzyme activities compared to GC, whereas 21/22d-FLT mice did not. FLT mice appeared more physically active than respective GC while soleus muscle showed expected atrophy. RNA and enzyme activity levels in tissues recovered on-orbit were of acceptable quality. Thus, this system establishes a new capability for conducting long-duration experiments in space, enables sample recovery on-orbit, and avoids triggering standard indices of chronic stress.

Funder

NASA, Space Biology Program and ISS Program, U.S.Government

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference69 articles.

1. Riley, D. A., Thompson, J. L., Krippendorf, B. B. & Slocum, G. R. Review of spaceflight and hindlimb suspension unloading induced sarcomere damage and repair. Basic. Appl. Myol. 5, 139–145 (1995).

2. Allen, D. L. et al. Effects of spaceflight on murine skeletal muscle gene expression. J. Appl. Physiol. 106, 582–595 (2009).

3. Ed. Ronca, A. E., Souza, K.A. & Mains, R.C. Translational Cell and Animal Research in Space 1965–2011. NASA/SP-2015-625 (2015).

4. Berg-Johansen, B. et al. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments. J. Orthop. Res. 34, 48–57 (2016).

5. Gambara, G. et al. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice. PLoS One 12, e0169314 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3