Structural optimization of multistage depressurization sleeve of axial flow control valve based on Stacking integrated learning

Author:

Li Shuxun,Deng Guolong,Hu Yinggang,Yu Mengyao,Ma Tingqian

Abstract

AbstractDue to the requirements of the working environment, the marine axial flow control valve needs to reduce the noise as much as possible while ensuring the flow capacity to meet the requirements. To improve the noise reduction effect of the axial flow control valve, this paper proposes a Stacking integrated learning combined with particle swarm optimization (PSO) method to optimize a multi-stage step-down sleeve of the axial flow control valve. The liquid dynamic noise and flow value of the axial flow control valve are predicted by computational fluid dynamics. Based on the preliminary evaluation of its performance, the structural parameters of the multi-stage pressure-reducing sleeve are parameterized by three-dimensional modeling software. The range of design variables is constrained to form the design space, and the design space is sampled by the optimal Latin hypercube method to form the sample space. An automated solution platform is built to solve noise and flow values under different structural parameters. The Stacking method is used to fuse the three base learners of decision tree regression, Kriging, and support vector regression to obtain a structural optimization fusion model with better prediction accuracy, and the accuracy of the fusion model is evaluated by three different error metrics of coefficient of determination (R2), Root Mean Squared Error, and Mean Absolute Error. Then the PSO particle swarm optimization algorithm is used to optimize the fusion model to obtain the optimal structural parameter combination. The optimized multi-stage depressurization structure parameters are as follows: hole diameter t1 = 3.8 mm, hole spacing t2 = 1 mm, hole drawing angle t3 = 6.4°, hole depth t4 = 3.4 mm, and two-layer throttling sleeve spacing t5 = 4 mm. The results show that the peak sound pressure level of the noise before and after optimization is 91.32 dB(A) and 78.2 dB(A), respectively, which is about 14.4% lower than that before optimization. The optimized flow characteristic curve still maintains the percentage flow characteristic and meets the requirement of flow capacity Kv ≥ 60 at the maximum opening. The optimization method provides a reference for the structural optimization of the axial flow control valve.

Funder

The Double First-Class Key Program of Gansu Provincial Department of Education

Gansu Province Science and Technology Program Funding

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3