Facile synthesis of hierarchically structured MIL-53(Al) with superior properties using an environmentally-friendly ultrasonic method for separating lead ions from aqueous solutions

Author:

Ahadi Niusha,Askari Sima,Fouladitajar Amir,Akbari Iman

Abstract

AbstractThe present study aims at investigating sonochemically synthesized MIL-53(Al) and its applications in adsorption lead ions from aqueous solution. XRD, FESEM, BET, and FTIR analyses were employed to identify and characterize MIL-53(Al). The ultrasonic-assisted synthesis procedure results in reducing the synthesis time to 24 h; however, the conventional synthesis of MIL-53(Al) takes 3 days. Applying ultrasonic waves also leads to increase of the specific surface area up to 50% more than that of synthesized by the conventional method, as well as creating the hierarchical MIL-53(Al) structure which reduces the mass transfer limitation of ions into internal micropores. The optimum conditions for removing lead ions are pH of 6, Pb+2 ion concentration of 20 mg/L, contact time of 60 min, adsorbent dose of 0.04 g, and temperature of 318 K with the removal efficiency of 97.63%. The experimental adsorption equilibrium and kinetic data fit the Langmuir isotherm and pseudo-second-order kinetic models, respectively. Moreover, the usage of sonochemically synthesized MIL-53(Al), for the first time as an adsorbent in heavy metal removal points to the great potential of this new environmentally-friendly adsorbent in removing lead ions from aqueous solutions

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3