Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems

Author:

Schöps RicardoORCID,Goldmann KeziaORCID,Korell Lotte,Bruelheide HelgeORCID,Wubet TesfayeORCID,Buscot François

Abstract

AbstractPlants are known to modulate their own rhizosphere mycobiome. However, field studies that use resident plants to relate the microbiome assemblage to environmental factors such as land-use suffer from the problem that confounding factors such as plant age and performance may override the targeted effects. In contrast, the use of even-aged phytometer plants pre-cultivated under uniform conditions helps to reduce such random variation. We investigated the rhizosphere mycobiomes of phytometer and resident plants of two common grassland species, Dactylis glomerata L. s. str. and Plantago lanceolata L. along a land-use intensity gradient using ITS rRNA Illumina amplicon sequencing. Remarkably, we did not detect effects of the plant types (resident vs. phytometer plant, even though some fungal taxa exhibited plant species specificity), indicating that phytometer plants hosted a comparable rhizosphere mycobiome as resident plants. Our data indicate that the plant species harbor distinct fungal communities, with fungal richness in the rhizosphere of P. lanceolata being substantially higher than that of D. glomerata. Land-use intensity had a clear impact on the mycobiome of both plant species, with specific fungal genera showing differential tolerance to high intensities. Overall, the phytometer approach has a high potential to reveal environmental impacts on rhizosphere communities.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3