Author:
Hassen Walid M.,Vermette Jonathan,Moteshareie Houman,Tayabali Azam F.,Dubowski Jan J.
Abstract
AbstractMonitoring the presence of pathogenic Bacillus spores is important for industrial applications, as well as necessary for ensuring human health. Bacillus thuringiensis is used as a biopesticide against several insect pests. Bacillus cereus spores are a significant cause of food poisoning, and Bacillus anthracis is a recognized biosecurity threat. Laboratory-based methods, such as polymerase chain reaction, enzyme-linked immunosorbent assay, or matrix-assisted laser desorption ionization spectroscopy provide sensitive detection of bacteria and spores, but the application of those methods for quasi-continuous environmental monitoring presents a significant challenge requiring frequent human intervention. To address this challenge, we developed a workstation for quasi-autonomous monitoring of water reservoirs for the presence of bacteria and spores, and designed and validated the functionality of a microprocessor-controlled module capable of repetitive collection and pre-concentration of spores in liquid samples tested with fiberglass (FG), polyether sulfone and polyvinylidene fluoride filters. The best results were obtained with FG filters delivering a 20× concentration of B. thuringiensis and B. cereus spores from saline suspensions. The successful 20× pre-concentration of Bacillus spores demonstrated with FG filters could be repeated up to 3 times when bleach decontamination is applied between filtrations. Taken together, our results demonstrate an attractive instrument suitable for semi-automated, quasi-continuous sampling and pre-processing of water samples for biosensing of bacterial spores originating from a complex environment.
Funder
Université de Sherbrooke, Sherbrooke, Québec, Canada
Health Canada, Ottawa, Ontario, Canada
Canadian Safety and Security Program of Defence Research and Development Canada, Centre for Security Science
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献