Statistical optimization, kinetic, equilibrium isotherm and thermodynamic studies of copper biosorption onto Rosa damascena leaves as a low-cost biosorbent

Author:

Fawzy Mustafa A.,Al-Yasi Hatim M.,Galal Tarek M.,Hamza Reham Z.,Abdelkader Tharwat G.,Ali Esmat F.,Hassan Sedky H. A.

Abstract

AbstractIn this study, Rosa damascena leaf powder was evaluated as a biosorbent for the removal of copper from aqueous solutions. Process variables such as the biosorbent dose, pH, and initial copper concentration were optimized using response surface methodology. A quadratic model was established to relate the factors to the response based on the Box–Behnken design. Analysis of variance (ANOVA) was used to assess the experimental data, and multiple regression analysis was used to fit it to a second-order polynomial equation. A biosorbent dose of 4.0 g/L, pH of 5.5, and initial copper concentration of 55 mg/L were determined to be the best conditions for copper removal. The removal of Cu2+ ions was 88.7% under these optimal conditions, indicating that the experimental data and model predictions were in good agreement. The biosorption data were well fitted to the pseudo-second-order and Elovich kinetic models. The combination of film and intra-particle diffusion was found to influence Cu2+ biosorption. The Langmuir and Dubinin–Radushkevich isotherm models best fit the experimental data, showing a monolayer isotherm with a qmax value of 25.13 mg/g obtained under optimal conditions. The thermodynamic parameters showed the spontaneity, feasibility and endothermic nature of adsorption. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the biosorbent before and after Cu2+ biosorption, revealing its outstanding structural characteristics and high surface functional group availability. In addition, immobilized R. damascena leaves adsorbed 90.7% of the copper from aqueous solution, which is more than the amount adsorbed by the free biosorbent (85.3%). The main mechanism of interaction between R. damascena biomass and Cu2+ ions is controlled by both ion exchange and hydrogen bond formation. It can be concluded that R. damascena can be employed as a low-cost biosorbent to remove heavy metals from aqueous solutions.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3