Author:
Joosse Huibert-Jan,van Oirschot Brigitte A.,Kooijmans Sander A. A.,Hoefer Imo E.,van Wijk Richard A. H.,Huisman Albert,van Solinge Wouter W.,Haitjema Saskia
Abstract
AbstractRed blood cell distribution width (RDW) is a biomarker associated with a variety of clinical outcomes. While anemia and subclinical inflammation have been posed as underlying pathophysiology, it is unclear what mechanisms underlie these assocations. Hence, we aimed to unravel the mechanisms in silico using a large clinical dataset and validate our findings in vitro. We retrieved complete blood counts (CBC) from 1,403,663 measurements from the Utrecht Patient Oriented Database, to model RDW using gradient boosting regression. We performed (sex-stratified) analyses in patients with anemia, patients younger/older than 50 and validation across platforms and care settings. We then validated our hypothesis regarding oxidative stress using an in vitro approach. Only percentage microcytic (pMIC) and macrocytic (pMAC) erythrocytes and mean corpuscular volume were most important in modelling RDW (RMSE = 0.40, R2 = 0.96). Subgroup analyses and validation confirmed our findings. In vitro induction of oxidative stress underscored our results, namely increased RDW and decreased erythrocyte volume, yet no vesiculation was observed. We found that erythrocyte size, especially pMIC, is most informative in predicting RDW, but no role for anemia or inflammation. Oxidative stress affecting the size of the erythrocytes may play a role in the association between RDW and clinical outcomes.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献