Effect of extracellular vesicles derived from induced pluripotent stem cells on mesangial cells underwent a model of fibrosis in vitro

Author:

dos Santos Bronel Bruno Aristides,Maquigussa Edgar,Boim Mirian Aparecida,da Silva Novaes Antônio

Abstract

AbstractThe fibrogenic process plays a significant pathophysiological role in the progression of chronic kidney disease. Inhibition of the renin-angiotensin system (RAS) is one strategy to delay disease progression but does not reverse established fibrosis. In this context, induced pluripotent stem cells (iPSCs) have been considered an alternative due to their regenerative potential. iPSCs exert their effects through paracrine signaling, which releases specific biomolecules into the extracellular environment, either directly or within extracellular vesicle (EVs), that can reach target cells. This study aims to evaluate the potential beneficial effects of iPSC-derived EVs (EV-iPSCs) in an in vitro model of fibrosis using mouse mesangial cells (MMCs) stimulated with TGF-β. EV-iPSCs were obtained by differentially ultracentrifuging iPSCs culture medium. MMCs were stimulated with 5 ng/mL of TGF-β and simultaneously treated with or without EV-iPSCs for 24 h. Markers of inflammation, fibrosis, and RAS components were assessed using RT-PCR, western blotting, and immunofluorescence. Under TGF-β stimulus, MMCs exhibited increased expression of inflammation markers, RAS components, and fibrosis. However, these changes were mitigated in the presence of EV-iPSCs. EV-iPSCs effectively reduced inflammation, RAS activation, and fibrogenesis in this fibrosis model involving mesangial cells, suggesting their potential as a strategy to reduce glomerular sclerosis.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3