Diverse cloud radiative effects and global surface temperature simulations induced by different ice cloud optical property parameterizations

Author:

Yi Bingqi

Abstract

AbstractThe representation of ice cloud optical properties in climate models has long been a difficult problem. Very different ice cloud optical property parameterization schemes developed based on very different assumptions of ice particle shape habits, particle size distributions, and surface roughness conditions, are used in various models. It is not clear as to how simulated climate variables are affected by the ice cloud optical property parameterizations. A total of five ice cloud optical property parameterization schemes, including three based on the ice habit mixtures suitable for general ice clouds, mid-latitude synoptic ice clouds, and tropical deep convective ice clouds, and the other two based on single ice habits (smooth hexagonal column and severely roughened column aggregate), are developed under a same framework and are implemented in the National Center for Atmospheric Research Community Atmospheric Model version 5. A series of atmosphere-only climate simulations are carried out for each of the five cases with different ice parameterizations. The differences in the simulated top of the atmosphere shortwave and longwave cloud radiative effects (CREs) are evaluated, and the global averaged net CRE differences among different cases range from − 1.93 to 1.03 Wm−2. The corresponding changes in simulated surface temperature are found to be most prominent on continental regions which amount to several degrees in Kelvin. Our results indicate the importance of choosing a reasonable ice cloud optical property parameterization in climate simulations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Provincial Pearl River Talents Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3