Application of machine learning for inter turn fault detection in pumping system

Author:

Dutta Nabanita,Kaliannan Palanisamy,Shanmugam Paramasivam

Abstract

AbstractPump fault diagnosis is essential for the maintenance and safety of the device as it is an important appliance used in various major sectors. Fault diagnosis at the proper time can reduce maintenance costs and save energy. This article uses a Simulink model based on mathematical equations to analyze the effects of parameter estimation of three-phase induction motor-based centrifugal pumps in inter-turn fault conditions. The inter-turn fault causes a massive in, a massive increase in current, which severely affects the parameters of both motor and pump. These have been analyzed by simulation through the Matlab Simulink model. Later, the results are verified by a hardware in loop (HIL) based simulator. In this paper, machine learning (ML) based artificial neural network (ANN) and ANFIS (ANN and Fuzzy) models have been applied for fault detection. ANN and ANFIS-based models provide a satisfactory level of accuracy. These models provide accurate training and testing results. Based on root mean square error (RMSE), R2, prediction accuracy, and mean validation value, these models are compared to find out which is more suitable for this experiment. Various supervised algorithms are compared with ANN, ANFIS, and lastly, found which is the most suitable for this experiment.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3