Coseismic fault slip inversion of the 2013 Lushan Ms 7.0 earthquake based on the triangular dislocation model

Author:

Duan HuRong,Chen JiaYing,Zhang ShuangCheng,Wu XiaoLong,Chu ZiMing

Abstract

AbstractThe 2013 Lushan Ms 7.0 earthquake occurred on the Longmenshan thrust tectonic zone, a typical blind reverse-fault type earthquake that caused the death of nearly 200 people. The investigation of the fault geometry and fault slip distribution of this earthquake is important for understanding the seismogenic tectonic type and seismic activity mechanism of the Longmenshan Fault Zone. In this paper, for the fault geometry of the Ms 7.0 earthquake in Lushan, the geometric parameters of the planar fault are inverted based on the rectangular dislocation model using GPS coseismic displacement data, and on this basis, a curved fault steeply-dipping on top and gently-dipping at depth is constructed by combining the aftershock distribution. The GPS and leveling data are used to invert the slip distribution of the curved fault for the Lushan Ms 7.0 earthquake. The results show that the fault is dominated by reverse slip with a small amount of sinistral rotation, and there is a peak slip zone with a maximum slip of 0.98 m, which corresponds to a depth of ~ 13.50 km, and the energy released is 1.05 × 1019 N/m with a moment magnitude of Mw 6.63. Compared with the planar rectangular dislocation model, the curved fault model constructed by using triangular dislocation elements can not only better approximate the fault slip, but also better explain the observed surface displacement, and the root mean square error of the GPS and leveling data fitting is reduced by 1.3 mm and 1.9 mm, respectively. Both the maximum slip and moment magnitude of the fault based on the inversion of the curved structure are slightly larger than the results based on the planar structure.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3