An objective absence data sampling method for landslide susceptibility mapping

Author:

Rabby Yasin WahidORCID,Li YingkuiORCID,Hilafu Haileab

Abstract

AbstractThe accuracy and quality of the landslide susceptibility map depend on the available landslide locations and the sampling strategy for absence data (non-landslide locations). In this study, we propose an objective method to determine the critical value for sampling absence data based on Mahalanobis distances (MD). We demonstrate this method on landslide susceptibility mapping of three subdistricts (Upazilas) of the Rangamati district, Bangladesh, and compare the results with the landslide susceptibility map produced based on the slope-based absence data sampling method. Using the 15 landslide causal factors, including slope, aspect, and plan curvature, we first determine the critical value of 23.69 based on the Chi-square distribution with 14 degrees of freedom. This critical value was then used to determine the sampling space for 261 random absence data. In comparison, we chose another set of the absence data based on a slope threshold of < 3°. The landslide susceptibility maps were then generated using the random forest model. The Receiver Operating Characteristic (ROC) curves and the Kappa index were used for accuracy assessment, while the Seed Cell Area Index (SCAI) was used for consistency assessment. The landslide susceptibility map produced using our proposed method has relatively high model fitting (0.87), prediction (0.85), and Kappa values (0.77). Even though the landslide susceptibility map produced by the slope-based sampling also has relatively high accuracy, the SCAI values suggest lower consistency. Furthermore, slope-based sampling is highly subjective; therefore, we recommend using MD -based absence data sampling for landslide susceptibility mapping.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3