Synergistic role of MoS2 in gelation-induced fabrication of graphene oxide films

Author:

Choi Minah,Lim Joonwon,Yang Jieun

Abstract

AbstractSupporting materials for electrocatalysts must exhibit relative chemical inertness to facilitate unimpeded movement of gas, and demonstrate electrical conductivity to promote efficient electron transfer to the catalyst. Conventional catalyst electrodes, such as glassy carbon, carbon cloths, or Ni foam, are commonly employed. However, the challenge lies in the limited stability observed during testing due to the relatively weak adhesion between the catalyst and the electrode. Addressing this limitation is crucial for advancing the stability and performance of catalyst-electrode systems in various applications. Here, we suggest a novel fabrication method for a freestanding conducting film, accomplished through gelation, incorporating 1T-MoS2 and graphene oxide. 1T-MoS2 nanosheets play a crucial role in promoting the reduction of graphene oxide (GO) on the Zn foil. This contribution leads to accelerated film formation and enhanced electrical conductivity in the film. The synergistic effect also enhances the film’s stability as catalyst supports. This study provides insights into the effective utilization of MoS2 and graphene oxide in the creating of advanced catalyst support systems with potential applications in diverse catalytic reaction.

Funder

Kyung Hee University

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3