Bioinformatics analysis of signature genes related to cell death in keratoconus

Author:

Liu Jinghua,Gao Juan,Xing Shulei,Yan Yarong,Yan Xinlin,Jing Yapeng,Li Xuan

Abstract

AbstractKeratoconus is corneal disease in which the progression of conical dilation of cornea leads to reduced visual acuity and even corneal perforation. However, the etiology mechanism of keratoconus is still unclear. This study aims to identify the signature genes related to cell death in keratoconus and examine the function of these genes. A dataset of keratoconus from the GEO database was analysed to identify the differentially expressed genes (DEGs). A total of 3558 DEGs were screened from GSE151631. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that they mainly involved in response to hypoxia, cell–cell adhesion, and IL-17 signaling pathway. Then, the cell death-related genes datasets were intersected with the above 3558 DEGs to obtain 70 ferroptosis-related DEGs (FDEGs), 32 autophagy-related DEGs (ADEGs), six pyroptosis-related DEGs (PDEGs), four disulfidptosis-related DEGs (DDEGs), and one cuproptosis-related DEGs (CDEGs). After using Least absolute shrinkage and selection operator (LASSO), Random Forest analysis, and receiver operating characteristic (ROC) curve analysis, one ferroptosis-related gene (TNFAIP3) and five autophagy-related genes (CDKN1A, HSPA5, MAPK8IP1, PPP1R15A, and VEGFA) were screened out. The expressions of the above six genes were significantly decreased in keratoconus and the area under the curve (AUC) values of these genes was 0.944, 0.893, 0.797, 0.726, 0.882 and 0.779 respectively. GSEA analysis showed that the above six genes mainly play an important role in allograft rejection, asthma, and circadian rhythm etc. In conclusion, the results of this study suggested that focusing on these genes and autoimmune diseases will be a beneficial perspective for the keratoconus etiology research.

Funder

the Tianjin Health Research Project

the National Natural Science Foundation of China

the Tianjin Science&Technology Foundation

the Tianjin Key Medical Discipline (Specialty) Construction Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3